Nets and Tiling

Michael O'Keeffe

Introduction to tiling theory and its application to crystal nets

Start with tiling in two dimensions.
Surface of sphere and plane
Sphere is two-dimensional. We require only two coordinates to specify position on the surface of a sphere:

The coordinates of

Hong Kong 22.3 N, 114.2 E
Tempe ` $33.4 \mathrm{~N}, 278.1 \mathrm{E}$

Tilings of the sphere (polyhedra) - regular polyhedra. one kind of vertex, one kind of edge, one kind of face

Quasiregular polyhedra: one kind of vertex, one kind of edge

Tiling of the plane - regular tilings one kind of vertex, one kind of edge, one kind of face

3^{6}
hexagonal lattice

4^{4}
square lattice

6^{3}
honeycomb net
quasiregular
one kind of vertex, one kind if edge 3.6.3.6 kagome net

cubic archimedean polyhedra - one kind of vertex

icosahedral Archimedean poyhedra - one kind of vertex

truncated dodecahedron tdo $3.10^{2}\left[3^{20} .10^{12}\right]$

rhombi-
icosidodecahedron
ric 3.4.5.4 $\left[3^{20} .4^{30} .5^{12}\right]$

icosidodecahedron
ido 3.5.3.5 [30 $\left.3^{20} .5^{12}\right]$
truncated
icosahedron tic $5.6^{2}\left[5^{12} .6^{20}\right]$

snub dodecahedron snd $3^{4} .5\left[3^{80} .5^{12}\right]$

truncatedicosidodecahedron tid 4.6.10 $\left[4^{30} .6^{20} .10^{12}\right]$

9 Archimedean tilings

Picture is from O'Keeffe \& Hyde Beeok

Duals of two-dimensional tilings vertices $<\longrightarrow$ faces

dual of octahedron 3^{4} is cube 4^{3}

dual of cube 4^{3} is octahedron 3^{4}
dual of dual is the original tetrahedron is self-dual

Duals: edges <-> faces

The dual of a dual is the original

Duals of 2-D periodic nets

$$
3^{6}<=>6^{3}
$$

AlB_{2}

$4^{4}<=>4^{4}$
self-dual

$\mathrm{SrMgSi}\left(\mathrm{PbCl}_{2}\right)$ one of the most-common ternary structure types net and dual (same net displaced) alternate

Euler equation and genus.
For a (convex) polyhedron with
V vertices
E edges
F faces
$V-E+F=2$

Euler equation and genus.
For a plane tiling with, per repeat unit
v vertices
e edges
f faces

$$
v-e+f=0
$$

Euler equation and genus.

For a tiling on a surface of genus g, with, per repeat unit
v vertices
e edges
f faces

$$
v-e+f=2-2 g
$$

genus of a surface
sphere $g=0$
note all vertices
4^{4} just like square
torus $g=1$
plane $g=1$
 lattice
genus of a net = cyclomatic number of quotient graph

genus of pcu net is 3

Two interpenetrating pcu nets

The P minimal surface separates the two nets. Average curvature zero Gaussian curvature neg.
infinite poyhedra - tilings of periodic surfaces
$4^{3} .6$ tiling of the P surface ($g=3$).

4-coordinated net rho (net of framework of zeolite RHO)

for the polyhedron
$v=48, e=96, f=44, v-e+f=-4=2-2 g$
net has vertex symbol 4.4.4.6.8.8

6.8^{2}

$\left(6^{3}\right)\left(6^{2} .8\right)_{2}$
tilings of P surface ("Schwarzites")
-suggested as possible low energy polymorphs of carbon

Tiling in 3 dimensions

Filling space by generalized polyhedra (cages) in which at least two edges meet at each vertex and two faces meet at each edge. Tilings are "face-to-face"

exploded view of space filling by cube tiles

tiling plus net of vertices and edges

net "carried" by tiling pcu

Tiling that carries the diamond (dia) net The tile (adamantane unit) is a cage with four 3-coordinated and six 2-coordinated there are four 6-sided faces i.e. [64]

adamantane unit \rightarrow

Tiles other than the adamantane unit for the diamond net

the arrows point to vertices on a 6-ring that is not a tile face

We have seen that if a net has a tiling at all, it has infinitely many made by joining or dividing tiles The tiling by the adamantane unit appears to be the "natural" tiling for the diamond net. What is special about it? It fits the following definition:

The natural tiling for a net is composed of the smallest tiles such that:
(a) the tiling conserves the maximum symmetry. (proper)
(b) all the faces of the tiles are strong rings.

Notice that not all strong rings are necessarily faces
A net may have more than one tiling that fits these criteria. In that case we reject faces that do not appear in all tilings.
natural tiling for body-centered cubic (bcu)

one tile

blue is 4-ring face of tile $=$ essential ring red is 4-ring (strong) not essential ring

Simple tiling

A simple polyhedron is one in which exactly two faces meet at each edge and three faces meet at each vertex.
A simple tiling is one in which exactly two tiles meet at each face, three tiles meet at each edge and four tiles meet at each vertex (and the tile is a simple polyhedron).
They are important as the structures of foams, zeolites etc. The example here is a tiling by truncated octahedra which carries the sodalite net (sod).

natural tiling of a complex net - that of the zeolite paulingite

Flags

regular tilings are flag transitive

2-D flag
vertex-edge-2D tile

3-D flag
vertex-edge-face-3D tile

Regular tilings and Schläfli symbols

(a) in spherical (constant positive curvature) space,
(b) euclidean (zero curvature) space
(c) hyperbolic (constant negative curvature) space
i.e. in S^{d}, E^{d}, and H^{d} (d is dimensionality)
H. S. M. Coxeter 1907-2003

Regular Polytopes, Dover 1973
The Beauty of Geometry, Dover 1996

Start with one dimension.
Polygons are the regular polytopes in S^{1} Schläfli symbol is $\{p\}$ for p-sided

$\{\infty\}$ is degenerate case - an infinite linear group of line segments. Lives in E^{1}

Two dimensions. The symbol is $\{p, q\}$ which means that $\mathrm{q}\{\mathrm{p}\}$ meet at a point three cases:
case (a) $1 / p+1 / q>1 / 2 \rightarrow$ tiling of S^{2}
$\{3,3\}$ tetrahedron
$\{3,4\}$ octahedron
$\{3,5\}$ icosahedron
$\{4,3\}$ cube
$\{5,3\}$ dodecahedron

tet $=$
tetrahedron

octahedron

cub $=$ cube

ico $=$
icosahedron

dod $=$ dodecahedron

Two dimensions. The symbol is $\{\mathrm{p}, \mathrm{q}\}$ which means that $q\{p\}$ meet at a point three cases:
case (b) $1 / p+1 / q=1 / 2 \rightarrow$ tiling of E^{2}
$\{3,6\}$ hexagonal lattice
$\{4,4\}$ square lattice
$\{6,3\}$ honeycomb

$\mathbf{h x I}=$
hexagonal lattice

sql =
square lattice

hcb = honeycomb

Two dimensions. The symbol is $\{p, q\}$ which means that $q\{p\}$ meet at a point infinite number of cases:
case (c) $1 / \mathrm{p}+1 / \mathrm{q}<1 / 2 \rightarrow$ tiling of H^{2}
any combination of p and q (both >2) not already seen

$\{7,3\}$
$\{8,3\}$

\{9,3\}
space condensed to a Poincaré disc

Three dimensions. Schläfli symbol $\{p, q, r\}$ which means $r\{p, q\}$ meet at an edge.

Again 3 cases
case (a) Tilings of S^{3} (finite 4-D polytopes)
\{3,3,3\} simplex
$\{4,3,3\}$ hypercube or tesseract
$\{3,3,4\}$ cross polytope (dual of above)
\{3,4,3\} 24-cell
$\{3,3,5\} 600$ cell (five regular tetrahedra meet at each edge)
$\{5,3,3\} 120$ cell (three regular dodecahedra meet at each edge)

Three dimensions. Schläfli symbol $\{p, q, r\}$ which means $r\{p, q\}$ meet at an edge.

Again 3 cases
case (b) Tilings of E^{3}
$\{4,3,4\}$ space filling by cubes self-dual
Only regular tiling of E^{3}

So what do we use for tilings that aren't regular?
Delaney-Dress symbol or D-symbol (extended Schläfli symbol)

Introduced by Andreas Dress (Bielefeld) in combinatorial tiling theory.

Developed by Daniel Huson and Olaf Delgado-Friedrichs.

tile for pcu.

one kind of chamber
D-size = 1
D-symbol
<1.1:1 3:1,1,1,1:4,3,4>

tile for dia.
two kinds of chamber
D-size $=2$
D-symbol
<1.1:2 3:2,1 2,1 2,2:6,2 3,6>

Q. How do you find the natural tiling for a net?

A. Use TOPOS

Q. How do you draw tilings?
A. Use 3dt

Transitivity

Let there be p kinds of vertex, q kinds of edge, r kinds of face and s kinds of tile. Then the transitivity is pqrs.

Unless specified otherwise, the transitivity refers to the natural tiling.

We shall see that there are five natural tilings with transitivity 1111 ; these are tilings of the regular nets.
(There are at least two not-natural tilings with transitivity 1111 - these have natural tilings with transitivity 1121 and 1112 respectively)

Duals

A dual tiling tiling is derived from the original by centering the old tiles with new vertices, and connecting the new vertices with new edges that go through each old face. The dual of a dual tiling is the original tiling If a tiling and its dual are the same it is self dual. The dual of a tiling with transitivity pqrs is srqp. The dual of a natural tiling may not be a natural tiling. If the natural tiling of a net is self-dual, the net is naturally self dual.
The faces (essential rings) of a natural tiling of a net are catenated with those of the dual.

Duals (cont)

The number of faces of a dual tile is the coordination number of the original vertex.
The number of vertices of a face of a dual tile is the number of tiles meeting at the corresponding edge of the original tiling.
The dual of a simple tiling is thus a tiling by tetrahedra (four 3-sided faces)

Sodalite (sod) tile part of a simple tiling

Dual tiling (blue) is bcu-x 14coordinated body-centered cubic. A tiling by congruent tetrahedra

Some examples of dual structures
simple tiling
sodalite (sod)
type I clathrate (mep)
type II clathrate (mtn)
tiling by tetrahedra body-centered cubic A15 $\left(\mathrm{Cr}_{3} \mathrm{Si}\right) \quad$ Frank-Kasper MgCu_{2}

mtn

mep

$\mathrm{Cr}_{3} \mathrm{Si}(\mathrm{A} 15)$

Type I clathrate melanophlogite (MEP) Weaire-Phelan foam

examples of duals

diamond (dia) is naturally self dual

the dual of body-centered cubic (bcu) is the 4 -coordinated NbO net (nbo)

Example of isohedral tiling by tetrahedra (Somerville tetrahedra). Only one that is also vertex transitive

Dual structure (sodalite). "Kelvin structure"

Another example: isohedral tiling by hlf-Somerville tetrahedra

Dual structure -zeolite RHO

The 1-skeleton (net) of RHO is also the 1 -skeleton of a $3^{3} .6$ tiling of a 3 -periodic surface.
(Hyde and Andersson)

Yet another isohedral tilina bv tetrahedra

12 tetrahedra forming a rhombohedron

Fragment of dual structure Zeolite structure code FAU (faujasite) - billion dollar material!
Also a $3^{4} .6$ tiling of a surface

How to find edge-transitive nets?
A net with ine kind of edge has a tiling that is dual to a tiling with one kind of face.

So let's systematically enumerate all tilings with one kind of face. (faces can be two sided like a coin)

1. list all polyhedra with one kind of face
2. extend the faces with divalent vertices
3. see if the cages form proper tilings
O. Delgado-Friedrichs \& M. O'Keeffe, Acta Cryst. A, 63, 244 (2007)

Examples of [64] face-transitive tiles

Table 1. Edge-transitive nets retrieved in this study listed by size of the Delaney-Dress symbol (D-symbol) of the proper tiling with smallest size. The 3-letter symbols are the RCSR (http://rcsr.anu.edu.au/) symbols.

D-symbol size	uninodal	binodal
1	pcu	
2	bcu, dia, $\mathbf{\text { fcu, nbo }}$	flu
3	reo, sod	
4	crs, $\mathbf{h x}$	pcu only
regular		
tiling!		

end

